BazarLoader’s Elaborate Flower Shop Lure

BazarLoader’s Elaborate Flower Shop Lure


Since 2021-01-20 Hornetsecurity observes a new malspam campaign using a fake flower shop in an elaborate social engineering lure to spread the BazarLoader malware. The campaign sends invoices from a fake flower shop in hopes that potential victims will manually find the fake flower shop website and download the BazarLoader malware.

In order to lure the victims into providing manual assistance the campaign setup a fully functional flower shop website and can thus evade automated detection schemes looking for malicious content, as the malicious download will be manually downloaded by the victim following several manual steps of the social engineering trap.


BazarLoader1 is a malware loader attributed to a threat actor with a close relation to the TrickBot malware. The threat actor is tracked under the name Team9 (Cybereason) or UNC1878 (FireEye).

BazarLoader is also aptly named KEGTAP by FireEye, as in a device used to open a beer keg, because it is used to “open” the network of victims for follow up malware in order to move laterally on the network and eventually deploy the Ryuk ransomware.2

We have previously reported on a BazarLoader campaign using an employment termination social engineering lure to spread its malware.3

The observed campaign started on 2021-01-21 and is ongoing.

BazarLoader campaign subject histogram

It uses various subjects referring to an invoice from the Rose World flower shop. Spoiler: The flower shop isn’t real. The attached invoice is an elaborate social engineering scam to trick victims into downloaded the BazarLoader malware.

Technical Analysis

The following analysis outlines each step of BazarLoader’s new elaborate social engineering campaign.


The attack starts with an email.

BazarLoader flower shop email

The email pretends to be an invoice from the Rose World online store, an online flower shop.


Attached to the email is a PDF invoice.

BazarLoader flower shop PDF

The PDF has no clickable links. It however features a domain name under the address of the supposed invoicing party.

BazarLoader flower shop URL in PDF

Fake Flower Shop

When the recipient visits this domain a webshop for flowers is presented.

BazarLoader fake flower shop

Even though this is a fake shop it features

  • an about page

BazarLoader flower shop fake about us page

  • a blog

BazarLoader flower shop fake blog

  • a shop with fully functional checkout cart, wish list, and Twitter and Facebook share buttons

BazarLoader flower shop

However, the checkout fails because allegedly there are no available payment methods.

BazarLoader fake flower shop fake checkout

The checkout is the only thing not working on the fake shop. Thus it is very hard to identify this as a malicious website.

The Lure

Because the shop looks legit a recipient will likely try to contact the shop owner to clear up the invoice they falsely received. To do so, they visit the contact us section of the fake shop.

BazarLoader fake flower shop contact us page

Here is one last indicator that something is not quite right. The Google Maps frame is in Russian language, while the rest of the webshop pretends to be from the United States of America. However, a victim will likely continue to the convenient order number entry field.

BazarLoader social engineering lure

When the victim enters the order number – in fact any input will suffice – they are redirected via a loading screen.

BazarLoader fake loading page

The loading page is also fake, the content is already loaded under the loading page overlay.

Next, the victim is presented instructions on how to download and execute the malware.

BazarLoader flower shop malware download instructions

It includes instructions to bypass the malicious file download warning on Google Chrome.

BazarLoader flower shop malware download instructions

It even includes instructions to bypass Windows security features preventing the file from being executed because it was downloaded from the Internet.

BazarLoader flower shop malware execution instructions

The “Request Form” link will download a malicious document from hxxps[:]//rosedelivery[.]us/.

Malicious Document

The malicious document pretends to be protected by DocuSign and macros need to be allowed to decrypt it.

BazarLoader flower shop malicious document

The XLM macro code will download the BazarLoader executable from hxxps[:]//www.smowengroup[.]com/fer/iertef.php and execute it.

BazarLoader flower shop malicious XLM macro script

The BazarLoader uses the decentralized Emerald DNS system based on the Emercoin blockchain to establish its C2 communication. It will download and install the BazarBackdoor1. This backdoor will be used to move laterally in the victim’s network in order to take over the domain controller. Eventually the intrusion is monetized by deploying the Ryuk2 ransomware.


The campaign is targeted towards US companies. We conclude this from the email, PDF, fake webshop, but also from the recipients, which are US companies and/or international companies with a US presence.

Conclusion and Countermeasures

The new BazarLoader campaign does not feature malicious indicators in its emails, such as macro documents or clickable URLs. It rather relies on an elaborate social engineering lure to lead the victim towards finding and downloading the malware themselves rather then directly handing it over. The amount of manual work required by victims makes this campaign difficult to detect via automated measures. This is why Hornetsecurity is closely tracking malspam operations by threat actors to quickly engage newly emerging threats. Hence Hornetsecurity is already aware of this new elaborate social engineering scheme to distribute the BazarBackdoor and Hornetsecurity’s Spam and Malware Protection, already quarantines the new BazarLoader emails.


Indicators of Compromise (IOCs)



  • Congratulations on the latest purchase you have made!Your order number is KCD[0-9]{8}G.
  • Congratulations on your purchase from our store! Your order number is KCD[0-9]{8}G.
  • Order Confirmed. Your order number KCD[0-9]{8}G will be send to you soon.
  • Purchase confirmation for order number KCD[0-9]{8}G
  • Thanks for your order, your order number KCD[0-9]{8}G.
  • Thank you for using the (Rose Deliver|Rose World) stores service. Your order number is KCD[0-9]{8}G.
  • Thank you for your order from the (Rose Deliver|Rose World) online shop, your order number is KCD[0-9]{8}G.
  • Thank you for your order from the (Rose Deliver|Rose World) online store, your order number is KCD[0-9]{8}G.
  • Thank you for your purchase, your order number is KCD[0-9]{8}G.
  • You have formed an order KCD[0-9]{8}G from (Rose Deliver|Rose World) online store.
  • Your order No. KCD[0-9]{8}G has been completed by (Rose Deliver|Rose World).

Representation was condensed by using the following regex patterns: KCD[0-9]{8}G, (Rose Deliver|Rose World)

Attachment Filenames

  • invoice_KCD[0-9]{8}G.pdf

Representation was condensed by using the following regex patterns: KCD[0-9]{8}G


MD5 Filename Description
c3347d329bda013282d32ee298c8dc45 invoice_KCD86786085G.pdf Lure PDF
e8b0cc2767cc0195570af56e9e7750fe request_form_1611584809.xlsm Downloaded Maldoc


  • hxxps[:]//roseworld[.]shop
  • hxxps[:]//rosedelivery[.]us/


  • roseworld[.]shop
  • rosedelivery[.]us
Emotet Botnet Takedown

Emotet Botnet Takedown


On 2021-01-27 it was announced by Europol that an international worldwide coordinated law enforcement and judicial action has disrupted the Emotet botnet and investigators have taken control of Emotet’s infrastructure. If successful this could mean the end of Emotet, its botnet, malspam, and malware loader operation. While the situation is still developing, we can confirm that the Emotet botnet infrastructure is disrupted. Victims will be notified by responsible country CERTs and should take appropriate actions to clean their Emotet malware and secondary malware infections to prevent still active malware that was downloaded by Emotet to deploy ransomware.


Emotet (also known as Heodo) was first observed in 2014. It was a banking trojan stealing banking details and banking login credentials from victims. But it pivoted to a malware-as-a-service (MaaS) operation providing malware distribution services to other cybercriminals. Today, Emotet is probably the most prolific malware distribution operation. To this end, it steals the emails of its victims and replies to the victim’s previous conversations. This is known as email conversation thread hijacking5. Hornetsecurity has written numerous blogposts about Emotet2,3,4,5.

What happened?

An international worldwide law enforcement and judicial effort, coordinated by Europol and Eurojust, has disrupted the Emotet botnet. The following authorities took part in this operation:

  • Netherlands: National Police (Politie), National Public Prosecution Office (Landelijk Parket)
  • Germany: Federal Criminal Police (Bundeskriminalamt), General Public Prosecutor’s Office Frankfurt/Main (Generalstaatsanwaltschaft)
  • France: National Police (Police Nationale), Judicial Court of Paris (Tribunal Judiciaire de Paris)
  • Lithuania: Lithuanian Criminal Police Bureau (Lietuvos kriminalinės policijos biuras), Prosecutor’s General’s Office of Lithuania
  • Canada: Royal Canadian Mounted Police
  • United States: Federal Bureau of Investigation, U.S. Department of Justice, US Attorney’s Office for the Middle District of North Carolina
  • United Kingdom: National Crime Agency, Crown Prosecution Service
  • Ukraine: National Police of Ukraine (Національна поліція України), of the Prosecutor General’s Office (Офіс Генерального прокурора).

The investigators obtained control over the infrastructure from one suspect located in Ukraine. Emotet’s C2 communication has been sinkholed and information of connecting victims has been given to the responsible country CERTs, which will notify the victims so they can clean up the infection.

The Dutch National Police has also obtained a database containing e-mail addresses, usernames and passwords stolen by Emotet over the years. They provide a website to check whether an email address has been compromised at

Emotet “uninstaller”

Additionally, German Federal Criminal Police (Bundeskriminalamt (BKA)) is distributing a Emotet remover program from within the Emotet botnet that will uninstall Emotet on 2021-04-25 at 12:00.

The program will create a timestamp for 2021-04-25 12:00 (note tm_month goes from 0 to 11, while tm_day goes from 1 to 31).

Emotet uninstaller timestamp

The program will spawn a thread that in a loop will sleep for 1000 minutes (16.6 hours) until the time to uninstall Emotet is reached.

Emotet uninstaller thread

Once the time to uninstall Emotet is reached Emotet’s registry key and its service are removed. The Emotet binary is moved to a temporary file path presumably to quarantine it for possible DFIR investigations on the infected system.

Emotet unistallation

The likely reason why Emotet isn’t removed immediately is to allow affected parties to run DFIR investigations to discover potentially secondary malware that was deployed via Emotet.

From our understanding the sinkholing and “uninstallation” actions are performed under the auspices of the German Federal Criminal Police (Bundeskriminalamt (BKA)), hence, the sinkhole IP addresses are owned by German ISP Deutsche Telekom.

What will happen next?

While our mail filters are still detecting sporadic emails containing malicious Emotet documents, these are likely emails that had still been lurking in queues either of the Emotet spambots or email systems and are just now being delivered even though the Emotet botnet infrastructure has been disrupted.

Emotet malspam histogram

We expect that these last drips of Emotet malspam dripping out of the dying Emotet botnet to dry out over the next days and weeks and if the takedown is successful stop entirely.

While there is always a chance that a botnet can regroup after a disruption (see TrickBot), this, however, seems unlikely in this case as not just the Tier 1 C2 proxy servers have been disrupted (as was the case with the disruption of the TrickBot botnet), but – from our information – also the Tier 2 C2 server, i.e., the real C2 server, to which the Tier 1 C2 proxy servers only relayed the traffic to, have been disruption as well.

Who will fill the void?

Emotet constituted around 20% of the malicious email traffic processed by Hornetsecurity. It distributed malware by other threat actors. While a successful takedown will mean no more Emotet malspam, it likely won’t mean a decrease in malspam, as other threat actors will try to fill the void and take over the existing customer base of Emotet’s malware-as-a-service (MaaS) operation.

One strong contender to fill the void generated by Emotet’s disruption is QakBot10. Last year QakBot added email conversation thread hijacking5 to its arsenal, i.e., like Emotet it steals emails from victims and crafts no tailored malspam by replying to existing email conversation threads. QakBot has also been observed loading other malware, such as ZLoader.8 In addition to that, QakBot’s XLM macro based malicious documents7 often have a lower detection rate then Emotet’s VBA macro base malicious documents. Thus, fulfilling all requirements a criminal would have towards an Emotet replacement.

Conclusion and Countermeasures

We congratulate all participating parties and hope for a successful longterm takedown of Emotet.

While Emotet itself may be inoperable, other threats Emotet has previously loaded such as TrickBot6, QakBot7, or Zloader8 remain active and could still deploy ransomware such as Ryuk and Egregor. If the authorities inform you of an Emotet infection you must also clean up these possible secondary infects to mitigate the complete threat.

In case the Emotet botnet can recover, Hornetsecurity’s Spam and Malware Protection, with the highest detection rates on the market, will again, as before the disruption, detect and quarantine malicious Emotet documents.


Indicators of Compromise (IOCs)


These are the IPs used by the German Federal Criminal Police (Bundeskriminalamt (BKA)) to sinkhole Emotet.



This is the hash of the program distributed by the German Federal Criminal Police (Bundeskriminalamt (BKA)) to remove Emotet on 2021-04-25 at 12:00.

MD5 Description
9a062ead5b2d55af0a5a4b39c5b5eadc Emotet “uninstaller”
QakBot reducing its on disk artifacts

QakBot reducing its on disk artifacts


QakBot has been updated with more evasion techniques. QakBot’s configuration is now stored in a registry key instead of a file. The run key for persistence is not permanently present in the registry but only written right before shutdown or reboot, and deleted immediately after QakBot is executed again. QakBot’s executable is also not stored permanently on the file system anymore, but similarly to the run key registry entry, dropped onto the file system before reboots and deleted afterwards. This way security software can only detect QakBot artifacts on disk, right before system shutdown, and shortly after system boot. However, at that time security software itself is shutting down and booting up, hence may not detect QakBot’s new persistence method.

Other changes include dynamic just-in-time decoding and destruction of strings at runtime. So any string used in the malware is only decoded at runtime into memory only and destroyed right afterwards.

The delivery method for the observed QakBot campaigns identified via the regular expression pattern of abc[0-9]+ is still XLM macro documents as reported previously.


QakBot (also known as QBot, QuakBot, Pinkslipbot) has been around since 2008. It is distributed via Emotet, i.e., Emotet will download QakBot onto victims that are already infected with Emotet but it is also distributed directly via email. To this end, it uses email conversation thread hijacking in its campaigns1, i.e., it will reply to emails that it finds in its victim’s mailboxes. QakBot is known to escalate intrusions by downloading the ProLock ransomware2 or lately the Egregor ransomware.

The observed QakBot campaigns identified by campaign ID abc use XLM macro documents for infection. We previously reported on their low detection.3

An overview of the current chain of infection used by the QakBot campaign with identifiers following the regular expression pattern of abc[0-9]+ can be seen in the following flow graph.

QakBot abc chain of infection

Technical Analysis

In the following analysis we briefly analyze the infection chain of QakBot after being downloaded and launched by the malicious Excel document.

QakBot infection process tree


QakBot uses various evasion techniques to avoid detection by anti-virus software.

PE header manipulation

We observed some QakBot DLLs with a manipulated PE header. The message text This program cannot be run in DOS mode. has been altered.

QakBot PE header manipulation

This seems like an attempt to circumvent some static detection rules matching for this message in the legacy MS-DOS stub of PE binaries.

Code signing

First, the initial downloaded and executed DLL is signed with a (at the time the analyzed sample was distributed) valid code signing certificate.

$ chktrust 904400.jpg
Mono CheckTrust - version
Verify if an PE executable has a valid Authenticode(tm) signature
Copyright 2002, 2003 Motus Technologies. Copyright 2004-2008 Novell. BSD licensed.

WARNING! 904400.jpg is not timestamped!
SUCCESS: 904400.jpg signature is valid
and can be traced back to a trusted root!

The signing CA is Sectigo and the organization is given as Aqua Direct s.r.o., which is an existing company.

$ osslsigncode verify 904400.jpg 
Current PE checksum   : 00091021
Calculated PE checksum: 00091021

Message digest algorithm  : SHA1
Current message digest    : 632DCB214EE9FB08441C640D240F672A7ABA6EB1
Calculated message digest : 632DCB214EE9FB08441C640D240F672A7ABA6EB1

Signature verification: ok

Number of signers: 1
    Signer #0:
        Subject: /C=CZ/postalCode=619 00/L=Brno/street=\xC5\xBDelezn\xC3\xA1 646/8/O=Aqua Direct s.r.o./CN=Aqua Direct s.r.o.
        Issuer : /C=GB/ST=Greater Manchester/L=Salford/O=Sectigo Limited/CN=Sectigo RSA Code Signing CA

Number of certificates: 4
    Cert #0:
        Subject: /C=CZ/postalCode=619 00/L=Brno/street=\xC5\xBDelezn\xC3\xA1 646/8/O=Aqua Direct s.r.o./CN=Aqua Direct s.r.o.
        Issuer : /C=GB/ST=Greater Manchester/L=Salford/O=Sectigo Limited/CN=Sectigo RSA Code Signing CA
    Cert #1:
        Subject: /C=GB/ST=Greater Manchester/L=Salford/O=Comodo CA Limited/CN=AAA Certificate Services
        Issuer : /C=GB/ST=Greater Manchester/L=Salford/O=Comodo CA Limited/CN=AAA Certificate Services
    Cert #2:
        Subject: /C=US/ST=New Jersey/L=Jersey City/O=The USERTRUST Network/CN=USERTrust RSA Certification Authority
        Issuer : /C=GB/ST=Greater Manchester/L=Salford/O=Comodo CA Limited/CN=AAA Certificate Services
    Cert #3:
        Subject: /C=GB/ST=Greater Manchester/L=Salford/O=Sectigo Limited/CN=Sectigo RSA Code Signing CA
        Issuer : /C=US/ST=New Jersey/L=Jersey City/O=The USERTRUST Network/CN=USERTrust RSA Certification Authority


It is unknown whether the certificate was obtained from Sectigo by giving false information, the certificate was stolen from Aqua Direct s.r.o., or whether the certificate was obtained from Sectigo by giving stolen information from Aqua Direct s.r.o..

QakBot is known to steal victim emails and use them in future malspam campaigns. So it is likely that they also use stolen victim data to obtain code signing certificates. However, the actors behind QakBot can also buy the code signing certificate from a (malicious) third party.

Strings only decoded at runtime

QakBot will decode its strings only at runtime into memory. After usage the decoded strings are removed from memory again.


QakBot uses CreateToolhelp32Snapshot and Process32{First,Next}W to enumerate the running processes.

QakBot enumerating processes API log

It checks for the following processes:

  • CcSvcHst.exe
  • avgcsrvx.exe
  • avgsvcx.exe
  • avgcsrva.exe
  • MsMpEng.exe
  • mcshield.exe
  • avp.exe
  • kavtray.exe
  • egui.exe
  • ekrn.exe
  • bdagent.exe
  • vsserv.exe
  • vsservppl.exe
  • AvastSvc.exe
  • coreServiceShell.exe
  • PccNTMon.exe
  • NTRTScan.exe
  • SAVAdminService.exe
  • SavService.exe
  • fshoster32.exe
  • WRSA.exe
  • vkise.exe
  • iserv.exe
  • cmdagent.exe
  • ByteFence.exe
  • MBAMService.exe
  • mbamgui.exe
  • fmon.exe

QakBot will set specific bits in a bit mask for each running process it finds. Depending on the resulting bit mask the further infection path is altered, e.g., if avp.exe has been encountered. QakBot will later inject its code into mobsync.exe instead of explorer.exe. Because the searched process names are related to security solutions, we believe that this way QakBot tailors its execution path to evade detection by specific vendors.

Then in another loop, again using CreateToolhelp32Snapshot and Process32{First,Next}W, it checks for:

  • srvpost.exe
  • frida-winjector-helper-32.exe
  • frida-winjector-helper-64.exe

If it detects any of those processes the execution flow will run into a loop continuously calling WaitForSingleObject(handle, 0x1fa) on a handle previously generated via CreateEvent(NULL, FALSE, FALSE, ...), i.e., it runs in an infinite loop.

Device drivers

Next, QakBot uses SetupDiGetDeviceRegistryPropertyA (querying properties SPDRP_DEVICEDESC and SPDRP_SERVICE) to check for device drivers containing the following strings:

  • VBoxVideo
  • Red Hat VirtIO
  • QEMU
  • A3E64E55_pr

We believe the search for A3E64E55_pr is used to detect an artifact of the ANY.RUN sandbox.4 Alternatively, but unlikely, it could be used to detect an artifact of the long ago defunct xCore Complex Protection AV solution using a similar driver with the name A3E64E55_pr.sys.

If it detects any of those device drivers the execution flow will run into the same infinite loop continuously calling WaitForSingleObject(handle, 0x1fa) on a handle previously generated via CreateEvent(NULL, FALSE, FALSE, ...), as previously mentioned.

Process injection

QakBot starts C:\Windows\SysWOW64\explorer.exe in suspended state and injects a DLL into it using CreateProcessInternalW, NtMapViewOfSection, NtAllocateVirtualMemory, WriteProcessMemory, memcpy, NtProtectVirtualMemory and NtResumeThread.

QakBot process injection into explorer.exe API log

The injected DLL can be extracted via PE-sieve5 or other tools for simplyfied further analysis.

Injected QakBot DLL extracted with PE-sieve

Depending on whether the previous process enumeration yielded results on the list, QakBot will inject into mobsync.exe (e.g., in case a avp.exe process is found running) instead of explorer.exe. But for simplicity we will only follow the explorer.exe process injection path we observed in our analysis environment.

C2 communication

After avoiding detection, the injected QakBot code within explorer.exe will start communicating with the C2 servers.

QakBot DLL in explorer.exe C2 communication

Like in previous versions of QakBot the C2 IP list is stored RC4 encrypted in resource section 311. The first 20 bytes of the section contains the RC4 key with which the rest of the section is decrypted. The first 20 bytes of the decrypted data will contain the SHA1 sum calculated over the rest of the decrypted data. It is used as a verification for correct decryption. Unlike in previous version, the C2 list is now stored in binary form and not as ASCII text anymore.

QakBot C2 list storage

For details on how to extract the C2 list and QakBot’s configuration see the Python3 script in the appendix. The input to the script is the path to the DLL that QakBot injected into explorer.exe, which we previously extracted via PE-sieve5.

QakBot configuration extraction with Python3 script

The configuration is stored using the same RC4 encryption scheme in resource section 308. In it we can see the bot and/or campaign ID abc103 that is associated with the analyzed sample. It is still stored in plain ACSII text. For each campaign the number is increased by one. This allows the operators behind QakBot to keep track to which campaign each victim connecting to their C2 server belongs to. Another currently observed identifier is tr02. This identifier, however, stayed the same over multiple malspam campaigns.

Via the C2 connection the operators behind QakBot can remote control the malware and deploy additional malicious modules.

QakBot will not store its configuration and C2 list on disk anymore. It will use the registry for storage.

QakBot using registry for configuration storage


The previous QakBot version used to overwrite its initial executable with a copy of cmd.exe. This version will overwrite the portion of the initially downloaded DLL after the PE header with zeros.

Here is the entropy of the QakBot DLL as downloaded.

QakBot DLL entropy before being overwritten

The zeroing of data after the header can be clearly seen when comparing the previous plot against a plot of the DLL file after wiping.

QakBot DLL entropy after being overwritten


The persistence mechanism of QakBot has also changed. While it still uses a run key registry entry under HKCU\Software\Microsoft\Windows\CurrentVersion\Run, this key is only set right before the system is shutdown, rebooted or put to sleep. The corresponding DLL is also only dropped to disk right before shutdown, rebooted or sleep.

After the system boots up again, QakBot is started via the run key. The execution tree also starts via regsvr32.exe -s ... like the initial execution from Excel. QakBot follows the same steps as previously outlined resulting in process injection into explorer.exe.

QakBot process tree after reboot

QakBot will then delete the run key registry entry and delete the DLL it dropped to disk prior to the reboot.

QakBot cleaning persistence

This way QakBot’s persistence can not be detected at runtime.


While we have previously reported on QakBot deliverying the ProLock ransomware,2 latests reports indicated that QakBot is now used to deliver the Egregor ransomware. We previously reported on the Egregor ransomware as part of an article on ransomware leaksites6 in which we explain the practice of ransomware operators stealing their victims data before encrypting it to extort them not only with decryption but also public release of the stolen data.

Conclusion and Countermeasures

From our analysis we can conclude that QakBot is trying to avoid persistent file artifacts. In previous version the configuration and QakBot executable were permanently stored on disk. This made it easy for security tools to detect them. The new version tries to avoid permanently leaving its artifacts on disk. While QakBot is not going fully fileless, it new tactics will sure lower its detection.

But even though QakBot has changed, the delivery mechanism behind the QakBot “abc[A-Z]+” campaign did not. Hence, an infection by this threat actor can be successfully prevented by blocking the initial emails.

Hornetsecurity’s Spam and Malware Protection, with the highest detection rates on the market, already detects and blocks the outlined threat. Hornetsecurity’s Advanced Threat Protection extends this protection by also detecting yet unknown threats.


Indicators of Compromise (IOCs)


The hashes of the analyzed QakBot samples are:

MD5 Filename Description
6bc0584f6cbb74714add1718b0322655 904400.jpg QakBot DLL as downloaded by XLM macro
e23bc27212f61520cfb130185d74cfb1 26e0000.dll Extracted QakBot DLL


The tactics and techniques used by QakBot as defined by the MITRE ATT&CK framework are as follows:

Tactic Technique
TA0001 – Initial Access T1566.001 – Phishing: Spearphishing Attachment
TA0001 – Initial Access T1566.002 – Phishing: Spearphishing Link
TA0002 – Execution T1027 – Obfuscated Files or Information
TA0002 – Execution T1204.002 – User Execution: Malicious File
TA0003 – Persistence T1547.001 – Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
TA0004 – Privilege Escalation T1053.005 – Scheduled Task/Job: Scheduled Task
TA0005 – Defense Evasion T1027.002 – Obfuscated Files or Information: Software Packing
TA0005 – Defense Evasion T1055 – Process Injection
TA0005 – Defense Evasion T1055.012 – Process Injection: Process Hollowing
TA0005 – Defense Evasion T1070 – Indicator Removal on Host
TA0005 – Defense Evasion T1497.001 – Virtualization/Sandbox Evasion: System Checks
TA0006 – Credential Access T1003 – OS Credential Dumping
TA0006 – Credential Access T1110.001 – Brute Force: Password Guessing
TA0006 – Credential Access T1555.003 – Credentials from Password Stores: Credentials from Web Browsers
TA0011 – Command and Control T1071.001 – Application Layer Protocol: Web Protocols
TA0011 – Command and Control T1090 – Proxy
TA0011 – Command and Control T1090.002 – Proxy: External Proxy


Qakbot configuration extraction Python3 script

import sys
import pefile
from arc4 import ARC4

pe = pefile.PE(sys.argv[1])
c2list = []
for entry in pe.DIRECTORY_ENTRY_RESOURCE.entries:
    for e in
        n =
        data = pe.get_data([0].data.struct.OffsetToData,[0].data.struct.Size)
        data = ARC4(data[:20]).decrypt(data[20:])[20:]
        if n == '311':
            for i in range(1,len(data),7):
                c2 = list(data[i:i+6])
                c2list.append("%d.%d.%d.%d:%d" % (c2[0],c2[1],c2[2],c2[3],(c2[4]<<8)+c2[5]))
        elif n == '308':
            config = data.decode().split()
print("# QakBot Config\n\n```\n" + "\n".join(config) + "\n```\n")
print("# QakBot C2\n\n```\n" + "\n".join(c2list) + "\n```\n")